610 research outputs found

    Estimating Maximally Probable Constrained Relations by Mathematical Programming

    Full text link
    Estimating a constrained relation is a fundamental problem in machine learning. Special cases are classification (the problem of estimating a map from a set of to-be-classified elements to a set of labels), clustering (the problem of estimating an equivalence relation on a set) and ranking (the problem of estimating a linear order on a set). We contribute a family of probability measures on the set of all relations between two finite, non-empty sets, which offers a joint abstraction of multi-label classification, correlation clustering and ranking by linear ordering. Estimating (learning) a maximally probable measure, given (a training set of) related and unrelated pairs, is a convex optimization problem. Estimating (inferring) a maximally probable relation, given a measure, is a 01-linear program. It is solved in linear time for maps. It is NP-hard for equivalence relations and linear orders. Practical solutions for all three cases are shown in experiments with real data. Finally, estimating a maximally probable measure and relation jointly is posed as a mixed-integer nonlinear program. This formulation suggests a mathematical programming approach to semi-supervised learning.Comment: 16 page

    A Message Passing Algorithm for the Minimum Cost Multicut Problem

    Get PDF
    We propose a dual decomposition and linear program relaxation of the NP -hard minimum cost multicut problem. Unlike other polyhedral relaxations of the multicut polytope, it is amenable to efficient optimization by message passing. Like other polyhedral elaxations, it can be tightened efficiently by cutting planes. We define an algorithm that alternates between message passing and efficient separation of cycle- and odd-wheel inequalities. This algorithm is more efficient than state-of-the-art algorithms based on linear programming, including algorithms written in the framework of leading commercial software, as we show in experiments with large instances of the problem from applications in computer vision, biomedical image analysis and data mining.Comment: Added acknowledgment

    Decomposition of Trees and Paths via Correlation

    Full text link
    We study the problem of decomposing (clustering) a tree with respect to costs attributed to pairs of nodes, so as to minimize the sum of costs for those pairs of nodes that are in the same component (cluster). For the general case and for the special case of the tree being a star, we show that the problem is NP-hard. For the special case of the tree being a path, this problem is known to be polynomial time solvable. We characterize several classes of facets of the combinatorial polytope associated with a formulation of this clustering problem in terms of lifted multicuts. In particular, our results yield a complete totally dual integral (TDI) description of the lifted multicut polytope for paths, which establishes a connection to the combinatorial properties of alternative formulations such as set partitioning.Comment: v2 is a complete revisio

    Combinatorial persistency criteria for multicut and max-cut

    Full text link
    In combinatorial optimization, partial variable assignments are called persistent if they agree with some optimal solution. We propose persistency criteria for the multicut and max-cut problem as well as fast combinatorial routines to verify them. The criteria that we derive are based on mappings that improve feasible multicuts, respectively cuts. Our elementary criteria can be checked enumeratively. The more advanced ones rely on fast algorithms for upper and lower bounds for the respective cut problems and max-flow techniques for auxiliary min-cut problems. Our methods can be used as a preprocessing technique for reducing problem sizes or for computing partial optimality guarantees for solutions output by heuristic solvers. We show the efficacy of our methods on instances of both problems from computer vision, biomedical image analysis and statistical physics

    Runtime-Flexible Multi-dimensional Arrays and Views for C++98 and C++0x

    Full text link
    Multi-dimensional arrays are among the most fundamental and most useful data structures of all. In C++, excellent template libraries exist for arrays whose dimension is fixed at runtime. Arrays whose dimension can change at runtime have been implemented in C. However, a generic object-oriented C++ implementation of runtime-flexible arrays has so far been missing. In this article, we discuss our new implementation called Marray, a package of class templates that fills this gap. Marray is based on views as an underlying concept. This concept brings some of the flexibility known from script languages such as R and MATLAB to C++. Marray is free both for commercial and non-commercial use and is publicly available from www.andres.sc/marrayComment: Free source code availabl

    How to Extract the Geometry and Topology from Very Large 3D Segmentations

    Full text link
    Segmentation is often an essential intermediate step in image analysis. A volume segmentation characterizes the underlying volume image in terms of geometric information--segments, faces between segments, curves in which several faces meet--as well as a topology on these objects. Existing algorithms encode this information in designated data structures, but require that these data structures fit entirely in Random Access Memory (RAM). Today, 3D images with several billion voxels are acquired, e.g. in structural neurobiology. Since these large volumes can no longer be processed with existing methods, we present a new algorithm which performs geometry and topology extraction with a runtime linear in the number of voxels and log-linear in the number of faces and curves. The parallelizable algorithm proceeds in a block-wise fashion and constructs a consistent representation of the entire volume image on the hard drive, making the structure of very large volume segmentations accessible to image analysis. The parallelized C++ source code, free command line tools and MATLAB mex files are avilable from http://hci.iwr.uni-heidelberg.de/software.phpComment: C++ source code, free command line tools and MATLAB mex files are avilable from http://hci.iwr.uni-heidelberg.de/software.ph

    Correlation Clustering of Bird Sounds

    Full text link
    Bird sound classification is the task of relating any sound recording to those species of bird that can be heard in the recording. Here, we study bird sound clustering, the task of deciding for any pair of sound recordings whether the same species of bird can be heard in both. We address this problem by first learning, from a training set, probabilities of pairs of recordings being related in this way, and then inferring a maximally probable partition of a test set by correlation clustering. We address the following questions: How accurate is this clustering, compared to a classification of the test set? How do the clusters thus inferred relate to the clusters obtained by classification? How accurate is this clustering when applied to recordings of bird species not heard during training? How effective is this clustering in separating, from bird sounds, environmental noise not heard during training?Comment: 13 page

    DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model

    Full text link
    The goal of this paper is to advance the state-of-the-art of articulated pose estimation in scenes with multiple people. To that end we contribute on three fronts. We propose (1) improved body part detectors that generate effective bottom-up proposals for body parts; (2) novel image-conditioned pairwise terms that allow to assemble the proposals into a variable number of consistent body part configurations; and (3) an incremental optimization strategy that explores the search space more efficiently thus leading both to better performance and significant speed-up factors. Evaluation is done on two single-person and two multi-person pose estimation benchmarks. The proposed approach significantly outperforms best known multi-person pose estimation results while demonstrating competitive performance on the task of single person pose estimation. Models and code available at http://pose.mpi-inf.mpg.deComment: ECCV'16. High-res version at https://www.d2.mpi-inf.mpg.de/sites/default/files/insafutdinov16arxiv.pd

    The Lazy Flipper: MAP Inference in Higher-Order Graphical Models by Depth-limited Exhaustive Search

    Full text link
    This article presents a new search algorithm for the NP-hard problem of optimizing functions of binary variables that decompose according to a graphical model. It can be applied to models of any order and structure. The main novelty is a technique to constrain the search space based on the topology of the model. When pursued to the full search depth, the algorithm is guaranteed to converge to a global optimum, passing through a series of monotonously improving local optima that are guaranteed to be optimal within a given and increasing Hamming distance. For a search depth of 1, it specializes to Iterated Conditional Modes. Between these extremes, a useful tradeoff between approximation quality and runtime is established. Experiments on models derived from both illustrative and real problems show that approximations found with limited search depth match or improve those obtained by state-of-the-art methods based on message passing and linear programming.Comment: C++ Source Code available from http://hci.iwr.uni-heidelberg.de/software.ph
    • …
    corecore